Creating a text editor—a tutorial

This tutorial takes you through the creation of a text editor complete with menus, a
toolbar, and a status bar. It includes a simple help file accessible from the application.

Note This tutorial is for all versions of Delphi 5.

Starting a new application

Before beginning a new application, create a folder to hold the source files:

1

2

3

Create a folder called TextEditor in the Projects directory off the main Delphi
directory.

Create a new project.

Each application is represented by a project. When you start Delphi, it creates a
blank project by default. If another project is already open, choose File | New
Application to create a new project.

When you open a new project, Delphi automatically creates the following files.

* Projectl.dpr: a source-code file associated with the project. This is called a project
file.

e Unitl.pas: a source-code file associated with the main project form. This is called
a unit file.

e Unitl.dfm: a resource file that stores information about the main project form.
This is called a form file.

Each form has its own unit (Unit1.pas) and form (Unit1.dfm) files. If you create a
second form, a second unit (Unit2.pas) and form (Unit2.dfm) file are automatically
created.

Choose File | Save All to save your files to disk. When the Save dialog appears,
* Navigate to your TextEditor folder.

Creating a text editor—a tutorial 1-1

Starting a new application

* Save Unitl using the default name Unitl.pas.

* Save the project using the name TextEditor.dpr. (The executable will be named
the same as the project name with an exe extension.)

Later, you can resave your work by choosing File | Save AlL

When you save your project, Delphi creates additional files in your project
directory. These files include TextEditor.dof, which is the Delphi Options file,
TextEditor.cfg, which is the configuration file, and TextEditor.res, which is the
Windows resource file. You don’t need to worry about these files but don’t delete
them.

When you open a new project, Delphi displays the project’s main form, named Form1
by default. You'll create the user interface and other parts of your application by
placing components on this form.

& Form1 [_ o] x]
The default form has Maximize
and Minimize buttons, a Close
button, and a Control menu.

If you run the form now by
pressing F9, you'll see that
these buttons all work.

To return to design mode, click
the X to close the form.

Next to the form, you'll see the Object Inspector, which you can use to set property
values for the form and components you place on it.

Ohject Inspector

The drop-down list at the top of the Object Inspector
Fomnn TFom =t e the currently selected object. In this case, the
Properties | Everts | object is Form1 and its type is TForm1.
BorderStyle hsSizeahles]
BordetWicth 0
Caption Form1
gliﬂmﬁﬁ g:g When an object is selected, the Object Inspector shows

Gallay its properties.

EConstraints |(TSizeCong
Cursar crDefault
Defaulthoni dmActiveF
DockSite |False
Dragiind | dkDrag
Draghode |dmbtdanual
Enabled |True

EFont (TFant)
Form3tyle |[fsMormal — +|

2 hidden 4

1-2 Quick Start

Setting property values

Setting property values

When you use the Object Inspector to set properties, Delphi maintains your source
code for you. The values you set in the Object Inspector are called design-time settings.

You can change the caption of Form1 right away:

* Find the form’s Caption property in the Object Inspector and type “Text Editor
Tutorial” replacing the default caption “Form1.” Notice that the caption in the
heading of the form changes as you type.

Adding objects to the form

Before you start adding objects to the form, you need to think about the best way to
create the user interface (UI) for your application. The Ul is what allows the user of
your application to interact with it and should be designed for ease of use. The text
editor application requires an editing area, a status bar for displaying information
such as the name of the file being edited, menus, and perhaps a toolbar with icons for
easy access to commands. The beauty of designing the interface using Delphi is that
you can experiment with different components and see the results right away. This
way, you can quickly prototype an application interface.

Delphi includes many objects that represent parts of an application. For example,
there are objects (also called components) that make it easy to program menus,
toolbars, dialog boxes, and hundreds of other visual (and nonvisual) program
elements.

The Component palette represents VCL components using icons grouped onto
tabbed pages. Add a component to a form by selecting the component on the palette,
then clicking on the form where you want to place it. You can also double-click a
component to place it in the middle of the form. To get help on the components,
select the component (either in the Component palette or on the form) and press F1.

iisi Delphi 5 - Project2
File Edit Search ¥iew Project Bun Component Database Tools Help |" Desktop setting |~ | & @,‘

DE-F @9 =2 g“l@ tencard | Additional | Win32 | Svstem | Dote Access | Data Contrals | ADO | InterBass | Miclas | >

FF@ar -0 g OF & AR S K e 5 8=l =D&

Component palette tabs Components

To start designing the text editor, add a RichEdit and a StatusBar component to the
form:

1 To create a text area, drop a RichEdit component onto the form.

Creating a text editor—a tutorial 1-3

Adding objects to the form

Click the Win32 page on the Component palette. To find the RichEdit component,
point to an icon on the palette for a moment; Delphi displays a Help hint showing
the name of the component.

5 Delphi 5 - TextEditor =l
Fie Edit Search Wiew Project Bun Component Tools Help | |||Desktop setting || &
O=- - ﬁ E H = @ Standard | Additional Win32]Sustem] Dialoas | Win 3.1 | Samoles | Active | Intemnet | Servers |
rEREIEEE L e fat: da = Bl e e Tl

Riche dit

When you find the RichEdit component, double-click it to place it on the form.

S¥ Text Editor Tutorial

- - [RickEditt

Each Delphi component is a class; placing a component on a form creates an
instance of that class. Once the component is on the form, Delphi generates the
code necessary to construct an instance object when your application is running.

2 Set the Align property of RichEdit1 to alClient.

1-4 Quick Start

Adding objects to the form

To do this, click on RichEdit] to select it on the form, then choose the Align
property in the Object Inspector. Select alClient from the drop-down list.

Obigct Inspector [x] Select the RichEdit1 component on the
[FichEditi: TRichE it -] form.
Propetties | Events | Look for Align in the Object Inspector.
Align allient | wi& Click the down arrow to display the
....... Alignment [aBotiom | property drop-down list.
FHAnchors alClient

BiDiMode |alLeft |~———Select alClient.
BorderStyle alNone

Barderw/idth | 2IFioht

Calor D —
Constraints [TSizeConstrain

Cursor il efault

DrragCursor cillrag |
|2 hidden 7

The RichEdit component now fills the form so you have a large text editing area.
By choosing the alClient value for the Align property, the size of the RichEdit
control will vary to fill whatever size window is displayed even if the form is
resized.

Double-click the StatusBar component on the Win32 page of the Component
palette. This adds a status bar to the bottom of the form.

i Delphi 5 - Project?

Eile Edit Search Miew Project Bun Component Database Tools Help HIIdE‘SleF' sefting = | & ﬂﬂg|

DE-Jd @ =2 g“l@ Standard | Addiional ind2 |Sv9tem| Data Access | Data Contrals | ADD | Interga >

S =R = = ol ol || e
StatlsBar

Next we want to create a place to display the name of the file being edited. You
can do this in two ways. The easiest way is to set the SimplePanel property of the
StatusBar1 object to True and assign any text that you want to display to the
SimpleText property. This provides only one panel in the status bar. You can assign
its value as follows:

StatusBarl.SimpleText := ’untitled.txt’;

However, many times you will want to include more than one panel in the status
bar so you can include more than one piece of information. You can specify more
than one panel by using the Panels property of the TStatusBar component as
explained in the next few steps.

Creating a text editor—a tutorial 1-5

Adding support for a menu and a toolbar

4 Double-click the status bar to di

splay the Editing StatusBar1.Panels dialog box.

V" Text Editor Tutorial M =]k
RichE dit1
¥ Editing StatusBar1.Panels
¥
& elete [ire]
4+ Hove llp [+l
T ¥ foye Down Ehldbovm
Select A
. . . |7 Toolbar
Right-click on here to display a
context menu. Choose Add to
create a panel on the status bar
that can hold persistent text.
- VA

5 Right-click on the dialog box and choose Add to add the panel to the status bar.

¥ Editing StatusBarl_Panels E

i3+ &

This shows the panel
you created. It has an
index number of 0.

The Panels property is a zero-based array that allows you to access each Panel that

you create based on its unique i

ndex value (by default, it is 0 for this panel). Use

the default property values for the panel. Click the X in the upper right corner to
close the dialog box. Now the main editing area of the user interface for the text

editor is set up.

Adding support for a menu and

a toolbar

For the application to do anything
convenience, a toolbar. Because so

, it needs a menu, commands, and, for
me of the same commands will appear on the

menu and the toolbar, you can centralize the code by creating an action list. Action

lists help to centralize the code for

1-6 Quick Start

the commands.

Adding support for a menu and a toolbar

Following are the kinds of actions our sample text editor application needs:

Table 1.1 Planning Text Editor commands

Command Menu On Toolbar? Description

New File Yes Creates a new file.

Open File Yes Opens an existing file for editing.

Save File Yes Stores the current file to disk.

Save As File No Stores a file using a new name (also lets you store a new file
using a specified name).

Exit File Yes Quits the editor program.

Cut Edit Yes Deletes text and stores it in the clipboard.

Copy Edit Yes Copies text and stores it in the clipboard.

Paste Edit Yes Inserts text from the clipboard.

Contents Help Yes Displays the Help contents screen from which you can
access Help topics.

Index Help No Displays the Help index screen.

About Help No Displays information about the application in a box.

You can also centralize images to use for your toolbar and menus in an ImageList.
To add an ActionList and an ImageList to your form:

1 From the Standard page of the Component palette, drop an ActionList component =
onto the form. The ActionList component is nonvisual, so it doesn’t matter where
you put it on the form. It won’t appear at runtime.

2 From the Win32 page, choose the ImageList component and drop it onto your form.

Tl
It’s also nonvisual so you can put it anywhere. —

Your form should now resemble the following figure.

5% Text Editor Tutorial B The ActionList
T aE_d Irpagel_’ltst
R objects don
3 :@Ié show when the
application is
running.

<— Editing area

~[<— Status bar

Creating a text editor—a tutorial 1-7

Adding support for a menu and a toolbar

Tip

Adding actions to the action list

Next we’ll add the actions to the action list.

By convention, we’ll name actions that are connected to menu items the name of the
top-level menu and the item name. For example, the FileExit action refers to the Exit
command on the File menu.

1 Double-click the ActionList icon.

The Editing Form1.ActionList1 dialog box is displayed. This is also called the
Action List editor.

2 Right-click on the Action List editor and choose New Action.

§¥ Editing Form1_ActionList] Eis%hé'(ﬁltig:‘ aonndtgﬁ Oﬁgion
3 - ¥ | + ¥ New Action to create an

action for the action list.
Cateqaries: Actions: |
[Mane) cton]; P
I an
% Mew Standard Action... Chil+nz
4+ ffove Up il
¥ ffove Down (St ¥ o
Cut Chrl+
Copy Chl+C
Pazte Chrl+
@ Delete [
Select All
|7 Panel Deschptions
|7 Toolbar

3 In the Object Inspector, set the following properties for the action:

» After Caption, type &New. Note that typing an ampersand before one of the letters
makes that letter a shortcut to accessing the command.

1-8 Quick Start

Adding support for a menu and a toolbar

» After Category, type File. This organizes the File commands in one place.
* After Hint, type Create file (this will be the Help hint).

» After Imagelndex, type 0 (this will associate image number 0 in your ImageList
with this action).

* After Name, type FileNew (for the File | New command).

DObject Inspector B " Editing Form1.ActionList1
With the new action FileNeve, T ésction =
selected in the action list ! : LT IR
editor, change s Fiopeiles | Events l Categonies: Actiong:
properties in the Object Caplion WHew Y e
Inspector. Category File
Caption is used in the Checked False
menu, Category is the Enabled True
type of action, Hintis a HelpContest |0 _
Help hint, Imagelndex Hirt Create file
lets you refer to a Imagelndex |0
graphic in the ImageList, | Mame FileM e
and Name is what it's ShertCut [Mane]
called in the code. Tag 0
Wizible True
|.t‘-\|| shown 4
With the new action Object Inspector liting Form1->ActionList1
selected in the action list FileMew: TActon ~]
editor, change its ! — A-% + @
properties in the ObjeCt R | Eventsl Categores: Actions:
Inspector. Caption M ew B m w—
Caption is used in the Category File
menu, Category is the Checked false
type of action, Hintis a Enabled true
Help hint, Imagelndex HelpCortext |0
lets you refer to a Hint Create file
graphic in the ImageList, Imagelndex |0
and Name is what it's Marne FileMew
called in the code. ShartCut [None) -
Tag i] =]
|1l shawn i

Right-click on the Action List editor and choose New Action.
5 In the Object Inspector, set the following properties:

After Caption, type &Open.

Make sure the Category says File.

After Hint, type Open file.

After Imagelndex, type 1.

After Name, type FileOpen (for the File | Open command).
6 Right-click on the Action List editor and choose New Action.

Creating a text editor—a tutorial 1-9

Adding support for a menu and a toolbar

7 In the Object Inspector, set the following properties:
* After Caption, type &Save.
* Make sure the Category says File.

After Hint, type Save file.

After Imagelndex, type 2.

After Name, type FileSave (for the File | Save command).
8 Right-click on the Action List editor and choose New Action.
9 In the Object Inspector, set the following properties:

» After Caption, type Save &&s.

* Make sure the Category says File.

After Hint, type Save file as.

No Imagelndex is needed. Leave the default value.

After Name, type FileSaveAs (for the File | Save As command).
10 Right-click on the Action List editor and choose New Action.
11 In the Object Inspector, set the following properties:

* After Caption, type E&xit.

* Make sure the Category says File.

After Hint, type Exit application.

After Imagelndex, type 3.

After Name, type FileExit (for the File | Exit command).

12 Right-click on the Action List editor and choose New Action to create a
customized Help | Contents command.

13 In the Object Inspector, set the following properties:
» After Caption, type &Contents.

After Category, type Help.

After Hint, type Display Help.

After Imagelndex, type 7.

After Name, type HelpContents (for the Help | Contents command).
14 Right-click on the Action List editor and choose New Action.
15 In the Object Inspector, set the following properties:

* After Caption, type &Index.

* Make sure the Category says Help.

* After Name, type HelpIndex (for the Help | Index command).

1-10 Quick Start

Note

Note

Adding support for a menu and a toolbar

16 Right-click on the Action List editor and choose New Action.
17 In the Object Inspector, set the following properties:

* After Caption, type &ibout.

* Make sure the Category says Help.

* After Name, type Helpabout (for the Help | About command).
Keep the Action List editor on the screen.

When you were adding actions to the action list, you might have noticed a standard
Help | Contents command is provided. We added a custom Help | Contents
command that will display the Help Contents tab at all times. The standard Help |
Contents command brings up the last tabbed page that was displayed, either the
Contents or the Index.

Adding standard actions to the action list

Delphi provides several standard actions that are often used when developing
applications. Next we’ll add the standard actions (cut, copy, and paste) to the action
list.

The Action List editor should still be displayed. If it’s not, double-click the ActionList
icon on the form.

To add standard actions to the action list:
1 Right-click on the Action List editor and choose New Standard Action.
The Standard Actions dialog is displayed.

S¥ Editing Form1.ActionList]

Right-click on the Action List editor and
choose New Standard Action.

The available standard actions are then
displayed. To pick one, double-click an
action.

- ¥

Categories: Actions:

HelpCantents
Helplnd

SV Standard Actions

Creating a text editor—a tutorial

ﬁ Mew Action Ins
Mew Standard Action... Chil+ins
* hevellE [EEr
i W [ove Down [EE D
TEditDelete Edit
TEditPaste Edit Eut Etrkx
TEditS electal Edit Copy Ctil+C
TEditUndo Edit
THelpContents Help Bt LRy
THelpOrHelp Help 85 el Dl
THelpTopicSearch Help Select Al
Thwindowdirange “indow -
TwindowCascade Wwindaw IT Parnel D escriptions
ThwindowCloze “indow '7 Taahbar
ThwfindowMinimized|l “indow =
TwindowTileHonizontal “indow
Thfindow Tile'ertical “indow

1-11

Adding support for a menu and a toolbar
2 Double-click TEditCut. The action is created along with a new category called
Edit. EditCutl should be selected.
3 In the Object Inspector, set the following property for EditCutl:
» After Imagelndex, type 4.
The other properties are set automatically.
4 Right-click on the Action List editor and choose New Standard Action.
5 Double-click TEditCopy.
In the Object Inspector, set the following properties:
» After Imagelndex, type 5.
Right-click on the Action List editor and choose New Standard Action.
Double-click TEditPaste.
9 In the Object Inspector, set the following properties:
» After Imagelndex, type 6.

10 Now you've got all the actions that you'll need for the menus and toolbar. If you
click on the category All Actions, you can see all the actions in the list:

S¥ Editing Form1 _ActionLiztl

ar

Categories: Actions:
[Maone] FileMew
Edit FileOpen
File FileS ave
File5 aveds
Fil=E «it
HelpCantents
Helplndax
Helpésbaut
EditCut
EditCap
EditPastel

&+ Editing Form1->ActionList1
A-m|r ¥
Categores: Actions:
[Mone] Fileh e
E_dit FileQpen
File FileS ave:
FileS aveds
FileE =it
HelpContents
Helplndex
Helpdbout
EditCutl

EditCopy
EditPastel

11 Click on the X to close the Action List editor.

1-12 Quick Start

Adding support for a menu and a toolbar

12 With the Action List still selected on the form, set its Images property to
ImageListl.

Object Inspector H 1 Text Editor Tutorial O]
IActionLisH: Tactionlist hd I

Properties I Events |

Images
Marmne: ActionList]
Tag]
|11 shown Z1 | v

Click on the Images property, then on the down arrow next to Images.
ImageList1 is listed for you. Select it. This associates the images that we’ll add
to the image list with the actions in the action list.

Adding images to the image list

Previously, you added an ImageList object to your form. In this section, you'll add
images to that list for use on the toolbar and on menus. Following are the images to
use for each command:

Command Icon image name Imagelndex property
File | Open Fileopen.bmp 0
File |INew Filenew.bmp 1
File | Save Filesave.bmp 2
File | Exit Doorshut.bmp 3
Edit | Cut Cut.bmp 4
Edit | Copy Copy.bmp 5
Edit | Paste Paste.bmp 6
Help | Contents Help.bmp 7

To add the images to the image list:
1 Double-click on the ImageList object on the form to display the Image List editor.

2 Click on the Add button and navigate to the Buttons directory provided with the
product. The default location is C:\Program Files\Common Files\Borland
Shared\Images\Buttons.

3 Select fileopen.bmp.

4 When a message asks if you want to separate the bitmap into two separate ones,
click Yes each time. Each of the icons includes an active and a grayed out version
of the image. You'll see both images. Delete the grayed out (second) image.

* Click Add and select filenew.bmp. Delete the grayed out image.

Creating a text editor—a tutorial 1-13

Adding a menu

* Click Add and select filesave.bmp. Delete the grayed out image.
* Click Add and select doorshut.bmp. Delete the grayed out image.
* Click Add and select cut.bmp. Delete the grayed out image.
* Click Add and select copy.bmp. Delete the grayed out image.
* Click Add and select paste.bmp. Delete the grayed out image.
* Click Add and select help.bmp. Delete the grayed out image.

5 Click OK to close the Image List editor.

You've added 8 images to the image list and they’re numbered 0-7 consistent with
the Imagelndex numbers on each of the actions.

6 To see the associated icons on the action list, double-click the ActionList object
then select the All Actions category.

S Editing Form1_ActionList1

-+ ¥

Categaries: Actions

(Hane) Filer e When you display the Action List editor

Eif';‘ [FileOpen now, you'll see the icons associated with

FileSave the actions.

FileSaveds We didn'’t select icons for three of the
B FieEsit commands because they will not be on the
? HelpContents toolbar.

Helplndex

Helpabout
EditCut
EditCopy?
ER EditPastet

When you're done close the Action List editor. Now you’re ready to add the menu
and toolbar.

Adding a menu

In this section, you'll add a main menu bar with three drop-down menus—TFile, Edit,
and Help—and you’ll add menu items to each one using the actions in the action list.

1 From the Standard page of the Component palette, drop a MainMenu component
onto the form. It doesn’t matter where you place it. =

2 Set the main menu’s Images property to ImageList1. This will allow you to add the
images to the menu items.

1-14 Quick Start

Adding a menu

3 Double-click the menu component to display the Menu Designer.

7l Form1_MainMenul

IS[=] E3

4 In the Object Inspector, type &File to set the Caption property of the first top-level
menu item and press Enter.

Obj tar =]
IFiIe‘I: Thenultem 'l

Froperties | Events |

Action -

AutoHotkeys | maFarent

AutoLineRedud maParent

Bitmap [Maone]

Break

Caption

Checked

D efault False

Enabled True

Grouplndex |0

HelpContext |0 |
|0 shown g

- (O] =]

7l Form1_MainMenul

When you type
&File and focus on
the Menu Designer,
the top-level File
command appears
ready for you to add
the first menu item.

5 In the Menu Designer, select the File item you just created. You'll notice an empty
item under it: select the empty item. In the Object Inspector, choose the Action
property. The Actions from the action list are all listed there. Select FileNew.

Objec tor <]
INew‘I: Thenultem 'l

Froperties | Events |

Action Filetew v -
AutoHaotkeys [EditCopyl 2
AuteLineR ed|E ditCutl

Bitmap EditPastel
Break HIeExit
....... Coton o |
Checked FileOpen
Diefault FileSave
Ensbled Ilezavehs =
Grouplndex |0
HelpContext |0 |
|0 shown g

7l Form1_MainMenul

IS[=] E3

When you select
FileNew from the
Action property
list, the New
command appears
with the correct
Caption and
Imagelndex.

* Focus on the item under New and choose FileOpen from its Action property.

* Focus on the item under Open and choose FileSave from its Action property.

* Focus on the item under Save and choose FileSaveAs from its Action property.

Creating a text editor—a tutorial 1-15

* Focus on the item under Save As and type a hyphen as the Caption of the next
item under the File menu and press Enterto create a separator bar on the menu.

* Focus on the item under the separator bar and choose FileExit from its Action
property.
6 Next create the Edit menu:

* Point to the item to the right of the File command and set its Caption property
to &Edit and press Enter.

* Focus is now on the item under Edit; choose EditCutl from its Action property.
* Select the item under Cut and choose EditCopy1 from its Action property.
* Select the item under Copy and choose EditPastel from its Action property.

b char E1|ll ! Form1.MainMenu1 =] B3
IPaste‘I: Thenultem 'l
Froperties | Eventsl Cut Chrl+
Action EditPastel [v| Emy (i
AutoHotkeys | maFarent
AutoLineR edus maFarent
Bitmap [Maone]
Break mbMone
Caption LPaste
Checked False
D efault False
Enabled True
Grouplndex |0
HelpContext |0 |
|0 shown g

7 Next create the Help menu:
* Point to the item to the right of the Edit command and type &Help as its caption.

* Focus on the Menu Designer to select the item under Help and choose
HelpContents from its Action property.

* Select the item under Contents and choose HelpIndex from its Action property.

* Select the item under Index and type a hyphen its Caption and press Enter to
create a separator bar on the Help menu.

* Select the item under the separator bar and choose HelpAbout from its Action
property.
Click on the X to close the Menu Designer.

Choose File | Save to save your project.

1-16 Quick Start

10 Press F9to compile and run the project. (You can also run the project by clicking
the Run button on the Debug toolbar, or by choosing Run from the Run menu.)

A Text Editor Tutorial =l E3 When you press F9to run your

File Edit Help project, the application interface

RichE ditl is displayed. The menus, text
area, and status bar all appear
on the form.

To return to design mode, click
the X to close the form.

| 4

When you run your project, Delphi opens the program in a window like the one
you designed on the form. The program is a full-fledged Windows application,
complete with Minimize, Maximize, and Close buttons and a Control menu. The
menus all work although most of the commands are grayed out. The images are
displayed next to menu items with which we associated icons.

Though your program already has a great deal of functionality, there’s still more
to do to activate the commands. And we want to add a toolbar to provide easy
access to the commands.

11 Click the X in the upper right corner to close the application and return to the
design-time view of the form.

Clearing the text area (optional)

When you ran your program, the name of the RichEdit control appeared in the text
area. You can remove that text using the Strings editor. This is optional because in a
later step, the text will be removed when initializing the main form.

To clear the text area:
1 On the main form, click on the RichEdit component.

2 In the Object Inspector, double-click on the value (TStrings) next to the Lines
property to display the String List editor.

3 Select the text you want to remove in the String List editor, press the Delete key,
and click OK.

4 Save your changes and trying running the program again.

The text editing area is now cleared when the main form is displayed.

Adding a toolbar

Since we’ve set up actions in an action list, we can add some of the same actions that
were used on the menus onto a toolbar.

Creating a text editor—a tutorial 1-17

Note

On the Win32 page of the Component palette, double-click the ToolBar to add it to
the form.

A blank toolbar is added under the main menu. With the toolbar still selected,
change the following properties in the Object Inspector:

* Set the toolbar’s Indent property to 4. (This indents the icons 4 pixels from the
left of the toolbar.)

o Set its Images property to ImageList].

* Set ShowHint to True. (Tip: Double-click on False to change it to True.)

Add buttons and separators to the toolbar:

With the toolbar selected, right-click and choose New Button four times.
Right-click and choose New Separator.

Right-click and choose New Button three more times.

Right-click and choose New Separator.

Right-click and choose New Button once again.

Don’t worry if the icons aren’t correct yet. The correct icons will be selected when
you assign actions to the buttons.

SF Text Editor Tutorial

Fie Edit Help

- N} 98| Ex TR 2 | < The toolbar object is added

RichEditl - e under the menus by default.
To add buttons or separators,

select the toolbar, right-click,

New Bulton <—and choose New Button or

New Separetor New Separator. Then assign

Align to Grid actions from the action list.
.,LE Bring to Front

"7 Send to Back

| Eresvertta lntiented

Assign actions from the action list to the first set of buttons.

Select the first button and set its Action to FileExit.
Select the second button and set its Action to FileNew.
Select the third button and set its Action to FileOpen.
Select the fourth button and set its Action to FileSave.

Assign actions to the second set of buttons.

e Select the first button and set its Action to EditCutl.

* Select the second button and set its Action to EditCopy1.
e Select the third button and set its Action to EditPastel.
Assign an action to the last button.

* Select the last button and set its Action to HelpContents.

Press F9to compile and run the project.

Your text editor already has lots of functionality. You can type in the text area.
Check out the toolbar. If you select text in the text area, the Cut, Copy, and Paste
buttons work.

1-18 Quick Start

7 Click the X in the upper right corner to close the application and return to the
design-time view.

Writing event handlers

Tip

Up to this point, you've developed your application without writing a single line of
code. By using the Object Inspector to set property values at design time, you've
taken full advantage of Delphi’s RAD environment. In this section, you'll write
procedures called event handlers that respond to user input while the application is
running. You'll connect the event handlers to the items on the menus and toolbar, so
that when an item is selected your application executes the code in the handler.

Because all the menu items and toolbar actions are consolidated in the action list, you
can create the event handlers from there.

For more information about events and event handlers, see “Developing the
application user interface” in the Developer’s Guide or online Help.

Creating an event handler for the New command

To create an event handler for the New command:
1 Choose View | Units and select Unitl to display the code associated with Form1.

2 You need to declare a FileName that will be used in the event handler. Add a
custom property for the file name to make it globally accessible. Earlier in the
Unitl.pas file, locate the public declarations section for the class TForm1 and on
the line after { Public declarations }, type:

FileName: String;

Your screen should look like this:

B Unit1.pas M=l E3
Uit | -
private ;I
{ Private declarations }
public Lo . i
{ Public declarations } This line defines FileName
FileNawe: String: as a string which is globally
end; accessible from any other
methods.
rar J
Forml: TForml;
implementation
a1 ;l_l
| B3 22 |Modified Irsert g

3 Press F12to go back to the main form.
F12 is a toggle which takes you back and forth from a form to the associated code.

4 Double-click the ActionList icon on the form to display the Action List editor.

Creating a text editor—a tutorial 1-19

5 In the Action List editor, Select the File category and then double-click the
FileNew action.

The Code editor opens with the cursor inside the event handler.

First, double-click the Action List object to display
the Action List editor.

1 Text Editor Tutorial

I Y B e N
Categories: Actions RichE dit1
Fi

[Mone]
E dit
ActionListl: TActionList
B Unit1.pas M=
Unit1 FIDIENE
7 HelpCpritents |
Helplridex = |
Helpdpout var
SQEdilc It Forml: TFormil:
B E ditCapy!
mEdiIPESIE1 implementation
{$R *.DFM}

Then, double-click the action to

procedure TForml.FileNewExecute (Sender: TCbhject):

create an empty event handler where begin
you can specify what will happen |
when users execute the command. jend:
end.
H of
| 70 1 |Modified |Insert 4

6 Right where the cursor is positioned in the text editor (between begin and end), type
the following lines:

RichEditl.Clear;
FileName := 'Untitled.txt’;
StatusBarl.Panels[0].Text := FileName;

Your event handler should look like this when you're done:

Uil | -
implementation ;I
This line clears the text area
{$R *.DFM} | when you create a new file.

procedure TForml.FileNewExecute (Sender: Tobj

This line calls the new file
begin | “Untitled.txt".
RichEditl.Clear;

: _ / This line puts the file name
FileName := 'Untitled.txt':

| into the status bar.

S

SGtatusBarl.Panels[0] .Text := FileName;
end;
+ end.
-
<| I 3
| 7113 |Modified IFsert i

That’s it for the File | New command.

1-20 Quick Start

Creating an event handler for the Open command

When you open a file, a File Open dialog is automatically displayed. To attach it to
the Open command, drop a TOpenDialog object on the main editor form. Then you
can write the event handler for the command.

To create an Open dialog and an event handler for the Open command:

1
2

4

5

Locate the main form (select View | Forms and choose Form1 to quickly find it).

From the Dialogs page of the Component palette, drop an OpenDialog component
onto the form. This is a nonvisual component, so it doesn’t matter where you place
it. Delphi names it OpenDialog1 by default. (When OpenDialog1’s Execute method is
called, it invokes a standard Windows dialog for opening files.)

In the Object Inspector, set the following properties of OpenDialog1:
* Set DefaultExt to txt.

* Double-click the text area next to Filter to display the Filter editor. Specify filters
for file types: Type “Text files” as the Filter Name and *.txt as the filter and
““All files” as a second Filter Name and *.* as its filter). Then click OK.

Fitter Editor Ed
Filker M arrie: IFiIter H
Tent filez * bt
Al files i |

=l
ok I Cancel Help

* Set Title to Open File.

The Action List editor should still be displayed. If it’s not, double-click the
ActionList icon on the form.

In the Action List editor, double-click the FileOpen action.

The Code editor opens with the cursor inside the event handler.

Right where the cursor is positioned in the text editor (between begin and end), type
the following lines:

if OpenDialogl.Execute then begin
RichEditl.Lines.LoadFromFile (OpenDialogl.FileName);
FileName := OpenDialogl.FileName;

Creating a text editor—a tutorial 1-21

StatusBarl.Panels[0].Text := FileName;
end;

Your FileOpen event handler should look like this when you’re done:

B Unit1.pas H[=1 3 . .
T , | _This line defines what
il | TeutE dior | A happens when the Open

procedure TForml.FileOpenExecute (3ender: Tobjectl: command is executed.
begin _) This line inserts the text
if COpenlialogl.Execute then begin

.| from the specified file.

-
[0

RichEditl.Lines.LoadFromFile (OpenDialogl.FilelMame) ! Lo .
This line sets the filename

FileNawe := Openlialogl.FileNsuue:
StatusBarl.Panels[0] .Text := FileNawe: to the one in the Open
end;: dialog.
end; L This line puts the file name
into the status bar.
end.

a1
| 84 3 |Modified [Insert

U |_/

That'’s it for the File | Open command and the Open dialog.

Creating an event handler for the Save command

To create an event handler for the Save command:

1 The Action List editor should still be displayed. If it’s not, double-click the
ActionList icon on the form.

2 On the Action List editor, double-click the FileSave action.
The Code editor opens with the cursor inside the event handler.

3 Right where the cursor is positioned in the text editor (between begin and end), type

the following lines:
if (FileName = 'Untitled.txt’) then

FileSaveAsExecute (nil)
else

RichEditl.Lines.SaveToFile (FileName);
This code tells the editor to display the SaveAs dialog if the file isn’t named yet so
the user can assign a name to it. Otherwise, save the file using its name. The
SaveAs dialog is defined in the event handler for the Save As command on
page 1-23. FileSaveAsExecute is the automatically generated name for the Save As
command.

1-22 Quick Start

Note

Your event handler should look like this when you’re done:

B Unit1.pas
Unit1 |TemEdmd

[(O] x|
-

procedure TForml.File3sveExecute (Jender: Tobhject):
begin
if (FileMame = 'TUntitled.txt') then

|

File3avelsExecute inil)
else

RichEditl.Lines.3aveToFile (FileNsaue) ;
end;

end.

[—

| 92 3 |Modiied [Imsert

[
of
7

That’s it for the File | Save command.

If the file is untitled, display

the File Save As dialog.

Otherwise, save to the
named file.

Creating an event handler for the Save As command

To create an event handler for the Save As command:

1 From the Dialogs page of the Component palette, drop a SaveDialog component
onto the form. This is a nonvisual component, so it doesn’t matter where you place
it. Delphi names it SaveDialog1 by default. (When SaveDialog’s Execute method is

called, it invokes a standard Windows dialog for saving files.)

2 In the Object Inspector, set the following properties of SaveDialog1:

* Set DefaultExt to txt.

* Double-click the text area next to Filter to display the Filter Editor. In the editor,
specify filters for file types as in the Open dialog (set Text files to *.txt and All

files to *.*) then click OK.
e Set Title to Save As.

The Action List editor should still be displayed. If it’s not, double-click the

ActionList icon on the form.

3 In the Action List editor, double-click the FileSaveAs action.

The Code editor opens with the cursor inside the event handler.

4 Right where the cursor is positioned in the text editor, type the following lines:

ogl.FileName := FileName;

ogl.InitialDir := ExtractFilePath(Filename);

ialogl.Execute then begin
RichEditl.Lines.SaveToFile (SaveDialogl.FileName);
FileName := SaveDialogl.FileName;
StatusBarl.Panels[0].Text := FileName;

end;

ia

O = =

Creating a text editor—a tutorial

1-23

Your FileSaveAs event handler should look like this when you're done:

B Unit1.pas [(O x} This sets the SaveAs

Lrit1 |TthEdim,| 4 » = - | dialog’s FileName property

procedure TForml.File3avelsExecute (Sender: ToObhjectis = to the main form’s FileName
. property value.
hegin
SJavelialogl.FileName := FileMName:; The default dlrectory is setto
SaveDialogl.InitialDir := ExtractFilePath(Filensme): <—1the lastone accessed

if Zavelialogl.Execute then begin This line saves the text to
FichEditl.Lines.3aveToFile (3avelialogl.FileName) ; %—the specified file

FileMNsine := Sawvelialogl.FileName: \ . . ,
L_This sets the main form’s

StatusBarl.Panels[0] .Text := FilelName: .
FileName to the name

end; J PN
end; specified in the SaveAs
.|| dialog.
< = 2 This puts the file name in the
|08 8 |[edfedl |[iwen Z| text panel of the status bar.

That’s it for the File | SaveAs command.

Creating an event handler for the Exit command

To create an event handler for the Exit command:

1 The Action List editor should still be displayed. If it’s not, double-click the
ActionList icon on the form.

2 On the Action List editor, double-click the FileExit action.
The Code editor opens with the cursor inside the event handler.

3 Right where the cursor is positioned in the text editor, type the following line:
Close;

This calls the close method of the main form. That’s all you need to do for the File |
Exit command.

4 Choose File | Save All to save your project.

1-24 Quick Start

To see what it looks like so far, run the application by pressing F9 or by clicking on
the green Run button |+ on the toolbar.

A Text Editor Tutonial (O] =] . -
Fie Edit Help The running application looks

a lot like the main form in
B[O

design mode. Notice that the
nonvisual objects aren't
there.

You can close the application
in three ways:

Click the X.
Choose FilelExit.

Click the Exit application
button on the toolbar.

| 4

Most of the buttons and toolbar buttons work but we’re not finished yet.

To return to design mode, close the Text Editor application by choosing File | Exit, by
clicking the Exit application button on the toolbar of your application, or by clicking
the X in the upper right corner.

If you receive any error messages, click on them to locate the error. Make sure you've
followed the steps as described in the tutorial.

Creating a Help file

It’s a good idea to create a Help file that explains how to use your application. Delphi
provides Microsoft Help Workshop in the Help\Tools directory which includes
information on designing and compiling a Windows Help file. In the sample editor
application, users can choose Help | Contents or Help | Index to access a Help file
with either the contents or index displayed.

Earlier, we created HelpContents and HelpIndex actions in the action list for
displaying the Contents tab or Index tab of a compiled Help file. We need to assign
constant values to the Help parameters and create event handlers that display what
we want.

To use the Help commands, you'll have to create and compile a Windows Help file.
Creating Help files is beyond the scope of this tutorial. A sample rtf file
(TextEditor.rtf), Help file (TextEditor.hlp) and contents file (TextEditor.cnt) are
downloadable from the http:/ /www .borland.com/techpubs/delphi/ Web site. Or,
to test the Help, you can use any HLP or CNT file (such as one of the Delphi Help
files and its associated CNT file) in your project. You will have to rename them for
the application to find them.

Creating a text editor—a tutorial 1-25

Creating an event handler for the Help Contents command

To create an event handler for the Help Contents command:

1 The Action List editor should still be displayed. If it’s not, double-click the

ActionList icon on the form.

2 On the Action List editor, select the Help category, then double-click the

HelpContents action.

The Code editor opens with the cursor inside the event handler.

3 Right before where the cursor is positioned in the text editor, that is, right before

begin, type the following lines:

const
HELP_TAB = 15;
CONTENTS_ACTIVE = -3;

Right after begin, type:

Application.HelpCommand (HELP_TAB, CONTENTS_ACTIVE);

This code assigns constant values to the HelpCommand parameters. Setting
HELP_TAB to 15 displays the Help dialog and setting CONTENTS_ACTIVE to -3

displays the Contents tab.
Your event handler should look like this when you’re done:
B Unit1.pas [_ O] %]

Uritl | TestEdior | -

procedure TForml.HelpContentsExecute (Sender: TObject) _‘|

const
HELF_TAE = 15;
CONTENTS _ACTIVE = -3;

bhegin
Application.HelpCommwand (HELF TAE, CONTENTS ACTIVE)!: <—
end;
end. o
A _>l_I
| 121 3 |Modified [Insert v

These lines define the
command and data
parameters of the
HelpCommand method
of TApplication.

This says to display the
Help dialog with the
contents tab displayed.

Tip To get Help on the HelpCommand method, put the cursor next to HelpCommand

in the editor and press F1.
That'’s it for the Help | Contents command.

Creating an event handler for the Help Index command

To create an event handler for the Help Index command:

1 The Action List editor should still be displayed. If it's not, double-click the

ActionList icon on the form.

1-26 Quick Start

2 On the Action List editor, select the Help category and then double-click the
HelpIndex action.

The Code editor opens with the cursor inside the event handler.

3 Right before where the cursor is positioned in the text editor, that is right before
begin, type the following lines:

const
HELP_TAB = 15;
INDEX_ACTIVE = -2;

Right after begin, type
Application.HelpCommand (HELP_TAB, INDEX_ACTIVE);

This code assigns constant values to the HelpCommand parameters. Setting
HELP_TAB to 15 again displays the Help dialog and setting INDEX_ACTIVE to -2

displays the Index tab.
Your event handler should look like this when you’re done:
B Unit1.pas [_ O] %]
Urit1 i - -) !

i | TexEditor | R These lines define the
procedure TForml.HelpIndexExecute (Sender: TChject): 2l command and data
const I~ parameters of the

HELF_TAE = 15; HelpCommand method
INDEX ACTIVE = -Z: of TApplication.
bhegin This says to display the
ipplication. HelpCommand (HELP_TLE, INDEX_ACTIWE); <— Help dialog withthe
end; index tab displayed.
end. |
SN _>l_I
| 130 51 |Modified [Insert v

That'’s it for the Help | Index command.

Creating an About box

Many applications include an About box which displays information on the product
such as the name, version, logos, and may include other legal information including
copyright information.

We've already set up a Help About command on the action list.

To create an About box:

Creating a text editor—a tutorial 1-27

1 Choose File | New to display the New Items dialog box and select the Forms tab.

5% New ltems E

Mew I Project! Forms IDiangsI Proiectsl

The New Items dialog box is also called the

Object Repository.

When you're creating an item based on
one from the Object Repository, you can
copy, inherit, or use the item:

Copy (the default) creates a copy of the
item in your project. Inherit means changes

Dual list boxw Tabbed pages

& Copy ¢ Inhert € Use to the object in the repository are inherited
= = = by the one in your project. Use means
ITI Cancel Help changes to the object in your project are

inherited by the object in the repository.

2 On the Forms tab, choose About Box.

A new form is created that simplifies creation of an About box.

A standard About box is
created when you choose
FileINew and click About Box
on the Forms tab. You can
modify it as you like to

L Copyright .- describe your application.

Comments

3 Select the following TLabel items in the About box and change them in the Object
Inspector:

* Change Product Name to Text Editor.
e Make it Version 1.0.
* Enter the year next to Copyright.

4 Select the form itself and change its Caption in the Object Inspector to About Text
Editor.

Tip The easiest way to select the form is to click on the grid portion.
Save the About box form by choosing File | Save As and saving it as About.pas.

In the Delphi editor, you should have two files displayed: Unitl and About. Click
on the Unitl tab to display Unitl.pas.

1-28 Quick Start

7 Add the new About unit to the uses section of Unit1, the main form: add the word
About to the list of included units in the uses clause.

edjtor.
& Unit1.pas [_ (O] x]
= = -

Vv
Uil | about |

Click on the tab to display a file associated with a unit. If you open
other files while working on a project, additional tabs appear on the

JE1 IS

unit Uniti; j

interface

uses
Windows, Messages, S3ysUtils, Classes, Graphics, Controls, Forms, Dialogs,
hotnlist, Imglist, ComCtrls, 23tdCtrls, Menus, Stdlictns, ToolWin,

type
TForml = class (TForm)
RichEditl: TRichEdit:
StatusBarl: T3tatusBar:

e

7. 73 | Modified [Insert

When you create a new form for your application, you need to add it to
the uses clause of the main form. Here we’re adding the About box.

8 On the action list, double-click the HelpAbout action to create an event handler.

9 Right where the cursor is positioned in the text editor, type the following line:

AboutBox.ShowModal;

This code opens the About box when the user clicks Help | About. ShowModal
opens the form in a modal state. That means the user can’t do anything until the
form is closed.

Completing your application

The application is almost complete. However, we still have to specify some items on
the main form.

To complete the application:
1 Locate the main form (press F12 to quickly find it).

Creating a text editor—a tutorial

1-29

2 Check that focus is on the form itself, not any of its components. The top list box
on the Object Inspector should say Form1: TForm1. (If it doesn’t, select Form1
from the drop down list.)

| Check here to make sure focus is on the

main form. If it's not, select Form1 from the
drop down list.

Object Inzpector
Farm1: TForm1

Properties Events I

Ondctivate o
OnCanResize
OnClick
OnClose
OnClozeQuery
OnConstrained
OnContextPop Double-click here to create an event handler
OnCreate FarmCreate »|<+—— for the form’s OnCreate event.

OnDbIClick
OnDeactivate
OnDestray
OnDockDrop

Bl
| &l shavn a

3 In the Events tab, double-click OnCreate to create an event handler that describes
what happens when the form is created (that is, when you open the application).

4 Right where the cursor is positioned in the text editor, type the following lines:

Application.HelpFile := ExtractFilePath(Application.ExeName) + 'TextEditor.hlp’;

FileName := 'Untitled.txt’;

StatusBarl.Panels[0].Text := FileName;

RichEditl.Clear;

This code initializes the application by associating a Help file, setting the value of
FileName to untitled.txt, putting the filename into the status bar, and clearing out
the text editing area.

5 Put the .HLP file and the CNT file into the project application directory (called
projects\ TextEditor).

Note If you decided not to investigate how to create a Help file or use the sample one
provided on the web, the application still works but you'll receive an error
message when you choose either of the Help commands or click Help on the
toolbar.

6 Press F9to run the application.

You can test the Text Editor now to make sure it works. If errors occur, click on the
error message and you'll go right to the place in the code where the error occurred.

Congratulations! You're done.

1-30 Quick Start

	Creating a text editor—a tutorial
	Starting a new application
	Setting property values
	Adding objects to the form
	Adding support for a menu and a toolbar
	Adding actions to the action list
	Adding standard actions to the action list
	Adding images to the image list

	Adding a menu
	Clearing the text area (optional)

	Adding a toolbar
	Writing event handlers
	Creating an event handler for the New command
	Creating an event handler for the Open command
	Creating an event handler for the Save command
	Creating an event handler for the Save As command
	Creating an event handler for the Exit command

	Creating a Help file
	Creating an event handler for the Help Contents command
	Creating an event handler for the Help Index command

	Creating an About box
	Completing your application

